DevJobs

DevOps Engineer

Overview
Skills
  • Bash Bash
  • Python Python
  • PostgreSQL PostgreSQL
  • Redis Redis
  • CI/CD CI/CD
  • GitHub Actions GitHub Actions
  • Jenkins Jenkins
  • Azure Azure
  • AWS AWS
  • GCP GCP
  • Kubernetes Kubernetes ꞏ 3y
  • Docker Docker ꞏ 3y
  • Helm
  • Terraform Terraform
  • Grafana Grafana
  • RabbitMQ RabbitMQ
  • ArgoCD
  • Loki
  • MinIO
  • NFS
  • OpenShift
  • OpenTelemetry
  • pgvector
  • External Secrets Operator
  • Prometheus Prometheus
  • Azure Key Vault
  • Security Context Constraints
  • Tempo
  • HashiCorp Vault

Jeen.AI empowers enterprises with generative AI through advanced AI agents, automations, voice analytics, and knowledge-based insights -- deployed across any cloud or on-premise environment. Trusted by government, defense, and enterprise organizations shaping tomorrow's technological landscape.



Why Join Us?

You won't be managing dashboards from a desk. As a DevOps Engineer at Jeen.AI, you'll deploy a production AI platform directly into customer environments -- from Azure AKS clusters to air-gapped OpenShift installations in high-security settings. You'll own the full deployment lifecycle across government, defense, and enterprise organizations in Israel and global markets.

This is a rare opportunity to build and scale real AI infrastructure from the ground up: architecting GitOps pipelines, automating multi-cloud provisioning, and solving the hard problems that come with deploying complex microservices platforms into diverse, constrained environments.



Responsibilities

  • Deploy and operate our AI platform across customer environments, including cloud (Azure, AWS, GCP) and on-premise/air-gapped Kubernetes and OpenShift clusters
  • Design and maintain Helm charts, ArgoCD ApplicationSets, and GitOps workflows for multi-environment delivery (dev, staging, production)
  • Build and improve CI/CD pipelines using GitHub Actions -- including multi-platform Docker image builds, automated security scanning (Trivy), and ArgoCD sync triggers
  • Manage secrets lifecycle using External Secrets Operator and Azure Key Vault across cloud and on-premise deployments
  • Own infrastructure-as-code with Terraform for Azure, AWS, and GCP resource provisioning
  • Operate and tune stateful workloads: PostgreSQL, RabbitMQ, Redis, and MinIO across environments with varying storage capabilities (NFS, local, managed)
  • Maintain and extend the observability stack -- Prometheus, Grafana, Loki, Tempo, and OpenTelemetry -- to ensure platform reliability and performance
  • Drive automation for air-gapped deployment workflows, including offline archive creation and local registry management
  • Identify and resolve performance bottlenecks, harden security posture, and improve platform resilience


Requirements

  • 3+ years of experience as a DevOps Engineer in a production environment
  • Strong hands-on experience with Kubernetes and Docker, including Helm chart development and management
  • Experience deploying and operating workloads on at least one major cloud provider (Azure preferred; AWS or GCP also valued)
  • Proficiency with CI/CD pipelines -- GitHub Actions preferred, Jenkins also relevant
  • Solid scripting skills in Python and/or Bash
  • Experience operating PostgreSQL, including backup, scaling, and troubleshooting in Kubernetes
  • Understanding of GitOps principles and tools such as ArgoCD
  • Familiarity with monitoring and observability tooling (Prometheus, Grafana, Loki, or equivalent)


Preferred Qualifications

  • Security clearance (or eligibility to obtain one)
  • Experience with OpenShift, including Security Context Constraints (SCCs) and enterprise deployment patterns
  • Hands-on experience with air-gapped or disconnected environment deployments
  • Familiarity with secrets management tools (External Secrets Operator, Azure Key Vault, HashiCorp Vault)
  • Experience with Terraform for multi-cloud infrastructure provisioning
  • Background in AI/ML infrastructure -- LLM serving, vector databases (pgvector), or embedding pipelines
  • Experience with message brokers (RabbitMQ) and caching layers (Redis) in production
Jeen.ai